6 research outputs found

    TESTING DECEPTION WITH A COMMERCIAL TOOL SIMULATING CYBERSPACE

    Get PDF
    Deception methods have been applied to the traditional domains of war (air, land, sea, and space). In the newest domain of cyber, deception can be studied to see how it can be best used. Cyberspace operations are an essential warfighting domain within the Department of Defense (DOD). Many training exercises and courses have been developed to aid leadership with planning and to execute cyberspace effects that support operations. However, only a few simulations train cyber operators about how to respond to cyberspace threats. This work tested a commercial product from Soar Technologies (Soar Tech) that simulates conflict in cyberspace. The Cyberspace Course of Action Tool (CCAT) is a decision-support tool that evaluates defensive deception in a wargame simulating a local-area network being attacked. Results showed that defensive deception methods of decoys and bait could be effective in cyberspace. This could help military cyber defenses since their digital infrastructure is threatened daily with cyberattacks.Marine Forces Cyberspace CommandChief Petty Officer, United States NavyChief Petty Officer, United States NavyApproved for public release. Distribution is unlimited

    New Frontiers-class Uranus Orbiter: Exploring the feasibility of achieving multidisciplinary science with a mid-scale mission

    Get PDF
    n/

    Retrotransposons Are the Major Contributors to the Expansion of the Drosophila ananassae Muller F Element

    No full text
    The discordance between genome size and the complexity of eukaryotes can partly be attributed to differences in repeat density. The Muller F element (∼5.2 Mb) is the smallest chromosome in Drosophila melanogaster, but it is substantially larger (>18.7 Mb) in D. ananassae. To identify the major contributors to the expansion of the F element and to assess their impact, we improved the genome sequence and annotated the genes in a 1.4-Mb region of the D. ananassae F element, and a 1.7-Mb region from the D element for comparison. We find that transposons (particularly LTR and LINE retrotransposons) are major contributors to this expansion (78.6%), while Wolbachia sequences integrated into the D. ananassae genome are minor contributors (0.02%). Both D. melanogaster and D. ananassae F-element genes exhibit distinct characteristics compared to D-element genes (e.g., larger coding spans, larger introns, more coding exons, and lower codon bias), but these differences are exaggerated in D. ananassae. Compared to D. melanogaster, the codon bias observed in D. ananassae F-element genes can primarily be attributed to mutational biases instead of selection. The 5′ ends of F-element genes in both species are enriched in dimethylation of lysine 4 on histone 3 (H3K4me2), while the coding spans are enriched in H3K9me2. Despite differences in repeat density and gene characteristics, D. ananassae F-element genes show a similar range of expression levels compared to genes in euchromatic domains. This study improves our understanding of how transposons can affect genome size and how genes can function within highly repetitive domains
    corecore